compotime.models.LocalLevelForecaster#
- class compotime.models.LocalLevelForecaster#
Bases:
objectLocal level state-space forecaster.
Notes
The local level model is described by the following equations:
\[\begin{split}\boldsymbol y_t &= \boldsymbol l_{t-1} + \boldsymbol \epsilon_t \\ \boldsymbol l_t &= \boldsymbol l_{t-1} + \alpha \boldsymbol \epsilon_t\end{split}\]where \(\boldsymbol y_t\) represents the unbounded time series observations at timestep \(t\) that result from applying the log-ratio transform, and \(\boldsymbol l_t\) represents the local level.
Equivalently, to express it in the same terms as the
LocalTrendForecaster, it is possible to use\[\begin{split}\boldsymbol y_t' &= \boldsymbol w \boldsymbol x_{t-1} + \boldsymbol \epsilon_t' \\ \boldsymbol x_t &= \boldsymbol F \boldsymbol x_{t-1} + \boldsymbol g \boldsymbol \epsilon_t'\end{split}\]where
\(\boldsymbol x_t = \boldsymbol l^{'}_{t}\), \(\boldsymbol w = 1\), \(\boldsymbol F = 1\), and \(\boldsymbol g = \alpha\).
- __init__()#
Methods
__init__()fit(y)Fit the model.
predict(horizon)Predict future values of the time series.
Attributes
optim_params_opt_success_X_fitted_curve_colnames_time_idx_idx_freq_base_col_idx_- fit(y: DataFrame) Self#
Fit the model.
- Parameters:
y – Time series dataframe, where rows represent the timestamps and columns the different shares series.
- Returns:
Fitted instance of the model.
- Return type:
Self
- predict(horizon: int) DataFrame#
Predict future values of the time series.
- Parameters:
horizon – Number of steps into the future to be predicted.
- Returns:
Predicted time series.
- Return type:
pd.DataFrame